Topographic and laminar maturation of striate cortex in early postnatal marmoset monkeys, as revealed by neurofilament immunohistochemistry.
نویسندگان
چکیده
The maturation of pyramidal neurons in the primary visual cortex (V1) of marmoset monkeys was investigated using an antibody (SMI-32) to non-phosphorylated neurofilament protein (NNF). Analysis of animals aged between birth and postnatal day 91 (PD 91, which corresponds approximately to the peak of synaptogenesis in this species) revealed discrete changes in both the laminar and the areal distribution of NNF. At PD 0, the upper part of layer 6 contained darkly labelled neurons and associated neuropil, including axons. In this layer a centroperipheral gradient, with more labelled cells in the foveal representation, was apparent at PD 0. This topographic gradient gradually disappeared, and by PD 91 a similar density of labelled layer 6 cells was observed throughout V1. Labelled cells were not apparent in layer 3C until PD 7, and were not distributed according to a topographic gradient. Labelled cells were first observed in layer 3B(alpha) at PD 28, when they formed a centroperipheral gradient similar to that seen in layer 6. This gradient was still evident in an adult animal. These results demonstrate an inside-out profile of postnatal cortical development, with the topographic pattern of maturation of V1 mimicking the centroperipheral gradient of maturation in the retina.
منابع مشابه
Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT).
It has been suggested that the development of the cerebral cortex reflects its hierarchical organization, with the primary sensory areas being the first to reach structural and functional maturity, and higher-order association areas being the last. In the present study, we labelled the cortex of New World marmoset monkeys of late fetal and early postnatal ages with an antibody to non-phosphoryl...
متن کاملPostnatal development of spatial coding in the gravity sensing system
The critical maturation time of central otolith neurons in processing spatial orientations was examined in Sprague-Dawley rats. With the use of immuno-hybridization histochemical methods, we observed c-fos expression in vestibular nuclear neurons responding to transverse movement on the horizontal plane as early as P7 and those to antero-posterior stimulation as early as P9. In the inferior oli...
متن کاملPostnatal development of spatial coding in the gravity sensing system
The critical maturation time of central otolith neurons in processing spatial orientations was examined in Sprague-Dawley rats. With the use of immuno-hybridization histochemical methods, we observed c-fos expression in vestibular nuclear neurons responding to transverse movement on the horizontal plane as early as P7 and those to antero-posterior stimulation as early as P9. In the inferior oli...
متن کاملImpact of hypokinesia on dynamics of formation of evoked potentials in sensorimotor cortex in early postnatal ontogenesis
The analysis of evoked potentials of sensorimotor cortex in response to electrical stimulation of n. ischiadicus shows that the extremal factor hypokinesia has a negative impact on the dynamics of formation of amplitudal and temporal characteristics since eyes openning in 2-weeks old rats. The most vulnerable process to the impact of hypokinesia is the first-positive phase, which disappears in ...
متن کاملImpact of hypokinesia on dynamics of formation of evoked potentials in sensorimotor cortex in early postnatal ontogenesis
The analysis of evoked potentials of sensorimotor cortex in response to electrical stimulation of n. ischiadicus shows that the extremal factor hypokinesia has a negative impact on the dynamics of formation of amplitudal and temporal characteristics since eyes openning in 2-weeks old rats. The most vulnerable process to the impact of hypokinesia is the first-positive phase, which disappears in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 15 6 شماره
صفحات -
تاریخ انتشار 2005